Search results for "PLANT MUTANTS"

showing 3 items of 3 documents

Fungal genes related to calcium homeostasis and signalling are upregulated in symbiotic arbuscular mycorrhiza interactions

2012

Fluctuations in intracellular calcium levels generate signalling events and regulate different cellular processes. Whilst the implication of Ca2+ in plant responses during arbuscular mycorrhiza (AM) interactions is well documented, nothing is known about the regulation or role of this secondary messenger in the fungal symbiont. The spatio-temporal expression pattern of putatively Ca2+-related genes of Glomus intraradices BEG141 encoding five proteins involved in membrane transport and one nuclear protein kinase, was investigated during the AM symbiosis. Expression profiles related to successful colonization of host roots were observed in interactions of G. intraradices with roots of wild-ty…

EXPRESSION[SDV]Life Sciences [q-bio]STRIGOLACTONESBiologySymbiosis-related plant mutantsPlant RootsCalcium in biologyFungal ProteinsRNA ACCUMULATIONCA2+Gene Expression Regulation FungalMycorrhizaeGene expressionBotanyMedicago truncatulaMedicagoGeneticsHomeostasis[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPLANTSGLOMUS-INTRARADICESGIGASPORA-ROSEAGlomeromycotaSymbiosisGeneEcology Evolution Behavior and SystematicsRegulation of gene expressionGene Expression ProfilingLasersMAGNAPORTHE-ORYZAEfungiMembrane transportbiology.organism_classificationMEDICAGO-TRUNCATULAMedicago truncatulaUp-RegulationCell biologyArbuscular mycorrhizaInfectious DiseasesMUTANTS[SDE]Environmental SciencesCalciumGlomus intraradicesGene expressionSignal transductionLaser microdissectionMicrodissectionSignal Transduction
researchProduct

Characterization of Pea (Pisum Sativum L.) genes implicated in arbuscular mycorrhiza formation and function

2010

The arbuscular mycorrhizal (AM) association results from a successful interaction between the genomes of the two symbiotic partners. In this context, the aim of my research was to better characterize the role of the late stage symbiosis-related pea genes PsSym36, PsSym33 and PsSym40 in the functional AM (i) by investigating the effect of mutations in the three genes on fungal and plant gene responses and (ii) by creating conditions for the localization of two of the genes, PsSym36 and PsSym40, on the pea genetic map for future map-based cloning. The expression of a subset of ten fungal and eight plant genes,previously reported to be activated during mycorrhiza development, was compared in G…

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesPlant mutantsMycorhizes à arbusculesFungal and plant gene expressionGenetic mappingExpression de gènes fongiques et végétauxSymbiosis related plant genesCartographie génétiqueMutants végétauxGlomus intraradicesArbuscular mycorrhiza[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesPisum sativumGènes végétaux de symbiose
researchProduct

Contribution of proteomics to arbuscular mycorrhiza in Medicago truncatula

2007

International audience; Because proteins are key effectors of plant responses to environmental cues including recognition, signalling, transport and defence reactions, main interest has been paid to characterize those involved in the establishment and functioning of arbuscular mycorrhizal (AM) symbiosis. In our group, the setting up of high throughput proteomic techniques on the model species, Medicago truncatula, is providing step-by-step a large-scale analysis of AM symbiosis-related proteins. Depending on the symbiotic stage targeted and on the abundance of mycorrhizal material, different proteomic strategies that can be combined with other large-scale approaches (transcriptomic and meta…

[SDV] Life Sciences [q-bio]SYMBIOSIS PROTEOMESARBUSCULAR MYCORRHIZAL FUNGUS[SDV]Life Sciences [q-bio]fungiMODEL PLANT SPECIESfood and beveragesPLANT MUTANTS
researchProduct